
1

Adaptive Phenotype Testing for AND/OR Items

Francis Y.L. Chin Henry C.M. Leung S.M. Yiu

Department of Computer Science, The University of Hong Kong

{chin, cmleung2, smyiu}@cs.hku.hk

Abstract: The combinatorial group testing problem is concerned with the design of experiments so as to

minimize the number of tests needed to find the sets of items responsible for a particular phenotype (an

observable property). The traditional group testing problem only considers the OR problem, i.e. the phe-

notype appears as long as one of the responsible items exists. In this paper, we introduce the phenotype

testing problem which is a generalization of the well-studied combinatorial group testing problem. In

practice, there are more than one phenotype and the responsible items and their mechanism (AND or OR)

for each phenotype are unknown where an AND mechanism means that the phenotype only appears if all

of the responsible items exist.

This phenotype testing problem has an important application in biological research, known as phenotype

knockout study. New algorithms for designing adaptive experiments for solving the phenotype testing

problem with n items using O(log n) tests in the worst cases (the constant varies for different problem set-

tings) are introduced. When the number of phenotypes is small, say at most 2, and the number of respon-

sible items for each phenotype is at most 2, algorithms with near-optimal number of tests are presented.

1 Introduction

Phenotype knockout study [10, 13, 14] is a new and critical application in the study of biology. Phenotype

refers to an observed physical characteristic of an organism (e.g. blue eyes, black hair, tumor). Many impor-

tant phenotypes are induced by genes. Given a set of phenotypes and a set of genes, the problem is to deter-

mine which subset of genes induces which phenotype and the mechanism (AND or OR). Knowing which

subset of genes and its mechanism for the phenotypes is useful in drug design such as tumor therapy. There

are two simple mechanisms for a subset of genes to induce a phenotype, the OR-mechanism and the AND-

mechanism. In the OR (AND)-mechanism, a subset of genes can induce a phenotype as long as one (all) of

these genes is (are) active, in other words, the phenotype disappears if and only if all (any one of) these genes

are (is) inactive. Besides AND and OR mechanisms, there are more complicated mechanisms between the

responsible genes and phenotypes, which are not discussed in this paper [3].

To discover which subset of genes and its mechanism for each phenotype, biologists can knockout a

gene [7,8] and observe if some particular phenotype still exists. However, such test is expensive and more

importantly, it is very time consuming. Since the number of genes responsible for a phenotype is usually

small, in practice, instead of checking one gene against each phenotype, we can check a subset of genes and

several phenotypes together in one test. For example, for the OR-mechanism, if some phenotype disappears,

we can conclude that none of the genes in the subset is responsible for their phenotype. Given n items and k

phenotypes, the phenotype testing problem is to design how to group the items (genes) into subsets such that,

based on the test results on these subsets, one can identify the responsible items (genes) for each phenotype

and find out the OR- or AND-mechanism of these items (genes) to induce the phenotype. From now on, we

shall use “genes” and “item” interchangeably as long as no confusion arises. The items that are responsible

for the phenotype with the OR- (AND-) mechanism, called OR- (AND-) phenotype, are referred to as OR-

items (AND-items). The objective is to have a design with as few subsets (or tests) as possible.

It turns out that this problem is related to the well-studied combinatorial group testing problem in com-

puter science. In the combinatorial group testing (CGT) problem [1,2,5,9,11], we are given a set of items in

which some of them are contaminated (or defective). We assume that a test can determine if a subset of items

contains any contaminated ones. If the result is negative, all the items in the subset are not contaminated. An

important objective of this problem is to design the grouping of the items into subsets in order to minimize

the number of tests. The phenotype testing problem is a generalization of the CGT problem by considering

more than one phenotype, each phenotype with different mechanisms and responsible items. One can easily

see that the CGT problem is equivalent to the phenotype testing problem with only one OR-phenotype.

The CGT problem has been studied under two different scenarios, adaptive and non-adaptive. In the

adaptive (or sequential) scenario, group tests are divided into stages, conducted one by one after the test re-

sults in previous stages are known. In the non-adaptive scenario, there is only one stage and all the group

tests are performed together at the same time. It is assumed that after one simple stage of group tests, we

should be able to discover all the responsible items in the non-adaptive scenario. Usually fewer tests are re-

quired under the adaptive scenario at the expense of more test stages. Non-adaptive tests will be conducted if

time is more critical. In the phenotype testing problem, we can also consider these two scenarios. In fact, the

non-adaptive phenotype testing problem with OR-mechanism has been studied in another application called

DNA library screening [4,6,12] in bioinformatics, which is referred as the pooling design problem. In this

paper, we will focus on the adaptive phenotype testing (APT) problem which minimizes the number of tests.

1.1 Our contributions:

For the adaptive case, existing solutions assume that there is only one phenotype. However, one test can pro-

duce test results for several phenotypes simultaneously and we shall show how to make use of this property to

solve the phenotype testing problem. The difficulty of the phenotype testing problem arises from the fact that

the subsets of items for testing might be different for each phenotype. For example, assume S1 and S2 are two

disjoint sets of items, phenotypes P1 is positive for S1 and phenotypes P2 is positive for S2 respectively. For

detecting the responsible items for P1, splitting S1 would be recommended, whereas splitting S2 would be rec-

ommended for detecting the responsible items for P2. Also, the mechanism of each phenotype is usually un-

known. So the design of the tests for phenotype testing might be different from that for CGT when there are

more than one phenotype.

In this paper, we first provide several algorithms to solve the APT problem for general k and d. Then,

for some special cases, algorithms with near-optimal number of tests are presented. The number of tests re-

quired by our algorithms is given in the Table 1.

2 Preliminaries

Given a set of n items (represented by a set of integers U = {1, 2, …, n}) and a phenotype Pr with a set Ur of

responsible items, we define Pr as a function 2U → {0,1} such that for any subset S of U, Pr(S) = 1 if and only

if Ur  S, where Ur is a set of AND-items for Pr (AND-mechanism) or Ur ∩ S ≠ Ø where Ur is a set of OR-

3

items for Pr (OR-mechanism). In practice, the size of Ur is small and bounded by a constant d, i.e. |Ur| ≤ d.

Given a set of n integers U = {1, 2, …, n} and a set of phenotype Pr, r = 1, …, k, each with a hidden set Ur of

responsible items where |Ur| ≤ d, the Adaptive Phenotype Testing (APT) problem is to design an algorithm for

constructing the minimum number of subsets S1, S2, …, Sq of U for testing sequentially such that we can de-

duce Ur and its mechanism from Pr(S1), Pr(S2), …, Pr(Sq), for all r = 1, …, k, where the k test results of

{Pr(Si)| r = 1, …, k} can be provided in a single test on subset Si. Note that the construction of Si might de-

pend on the test results on S1, S2, …, Si-1. �

The following theorem shows that the APT problem with only AND-phenotypes is equivalent to the APT

problem with only OR-phenotypes.

Theorem 1: The APT problem with only AND-phenotypes and the APT problem with only OR-phenotypes

are equivalent.

Proof: We reduce the APT problem with only AND-phenotypes Pr to the APT problem with only OR-

phenotypes Pr as follows. Assume that for a sequence of tests, the subsets of items S1, S2, …, Si, … are con-

structed by an algorithm for solving the APT problem with AND-phenotypes Pr. We can apply the same algo-

rithm to solve the APT problem with OR-phenotypes Pr’ by replacing Si by U/Si, i.e. the complement of Si,

and the test results of Pr(Si) by 1- Pr’(U/Si). It is easy to show that Pr(Si) = 1 iff all the AND-items are in Si;

alternatively, Pr’(U/Si) = 0 iff all the OR-items are in Si. Thus, the algorithm which constructs S1, S2, …, Si for

identifying the AND-items would be able to construct the sequence U/S1, U/S2, …, U/Si , … for identifying

the same OR-items. It is obvious that the reduction in the other direction is the same. �

3 APT algorithms for general k and d

In this section, we provide several algorithms to solve the APT problem for general k  1 and d  1. For only

one phenotype with any number of responsible items (k = 1 and d  1), we give an algorithm using at most d

log2n + (d + 2) tests. Then, for more than one phenotype, with at most d responsible items, we provide an

algorithm to solve the APT problem with 4 d  2/k  · log2n tests.

3.1 One phenotype with at most d responsible items (k = 1, d ≥ 1)

Assume that we can solve one OR-phenotype (k = 1) problem with d OR-items in t(n,d) tests [9]. We shall

first use two tests to determine the mechanism of the phenotype and at the same time reduce the size of the

problem. Then the responsible items can be identified by Theorem 1.

of phenotypes (k)
Max. # of responsible

items per phenotype (d)
Number of tests required

General solution
k = 1 d  1 d log2n + (d + 2)

k  2 d  1 4 d  2/k  · log2n
Special cases
k = 1 d = 2 2 log2n
k = 2 d = 1 log2n

k = 2 d = 2 2log2n + 2 1log2 n 

Table 1. Summary of our results

Theorem 2: Let U = {1,2, …, n}. The APT problem with k = 1 unknown phenotype and at most d (d ≥ 1)

responsible items can be solved in maxs = 0,…, log2n{t(n/2s, d)+2s} tests.

Proof: Without loss of generality, assume n is a power of 2. Partition U into two equal size subsets S1 and S2.

Apply a test on S1 and S2 respectively. There are 4 outcomes.

If P(S1) = 1 and P(S2) = 1, this implies an OR-phenotype. This reduces to the APT problem of size n with OR-

mechanism which can be solved using t(n,d) tests.

If P(S1) = 0 and P(S2) = 0, this implies an AND-phenotype. This reduces to the APT problem of size n with

AND-mechanism which can be solved using t(n,d) tests (converting AND-items to OR-items by applying

Theorem 1).

If P(S1) = 1 and P(S2) = 0, or alternatively P(S1) = 0 and P(S2) = 1, this reduces to the original problem of half

of the size, which can be solved recursively.

The number of required tests would be the maximum of these cases as given in the statement of the theorem.�

Corollary: The APT problem with k = 1 and d ≥ 1 can be solved with dlog2n + (d + 2) tests.

Proof: Hunag’s Generalized Binary Splitting Algorithm [9] can solve the APT problem with one OR-

phenotype (k = 1) with at most d OR-items in t(n,d) = log2(d
n) + d ≤ dlog2n + d tests. Since t(n, d) + 2 =

dlog2n + d + 2 ≥ dlog2n + d + 2 + (2 – d)s = t(n/2s, d) + 2s when d ≥ 2 for all positive integer s, the number

of tests needed is t(n, d) + 2 = dlog2n + (d + 2). �

3.2 Multiple phenotype with at most d responsible items (k ≥ 2 and d ≥ 1)

When there are more than one phenotype, the algorithm mentioned in Section 3.1 can be repeated k times and

the APT problem can be solved with kdlog2n + k(d + 2) tests. However, the test on a phenotype may also

provide information of another phenotype as long as both phenotypes need the test results on the same subset

or disjoint subset of items. In order to reduce the number of tests, we should design the subsets to be tested by

different phenotypes such that each test can provide information to determine the responsible items for sever-

al phenotypes.
Consider solving the APT problem (k = 1 and d = 2) for phenotype Pp with at most two responsible

items x1 and y1 using at most 3log2n – 1 tests as follows. First, we represent the n items by n distinct length-

log2n binary numbers, e.g. item b = b[1]b[2]…b[log2n]. The idea is to deduce the binary representation of

the responsible items by the phenotype test. If the tested subset is formed according to binary numbers of the

items, e.g. the subset containing all items with 1 at their i-th digit, then a positive phenotype test on this sub-

set would indicate that one of the responsible items has 1 in the i-th digit of its binary representation. Assume

we perform 2 tests Pp(Si,0) and Pp(Si,1) such that b  Si,0 iff b[i] = 0 and b  Si,1 iff [i] = 1 for every digit i of

the length-log2n binary numbers. Note that the same two tests would also give the test results of other phe-

notypes in Si,0 and Si,1 at the same time. If Pp(Si,0) = Pp(Si,1) = 0 or 1, we can conclude that some responsible

items are in Si,0 and some in Si,1, i.e. these two sets of responsible items have different i-th digit, and Pp is

AND- or OR-phenotype. Otherwise, Pp(Si,0) ≠ Pp(Si,1), the set S i,α with Pp(S i,α) = 1 contains all responsible

items for Pp, i.e. the i-th digit of all responsible items is α which is either 0 or 1. If there is only one responsi-

ble item for Pp, the binary string b = b[1]b[2]…b[log2n] such that Pp(Sj,b[j]) = 1 represents the responsible

item of Pp.

The algorithm starts with i = 1, we perform a test on Pp(S1,0) and Pp(S1,1). If Pp(S1,0) ≠ Pp(S1,1), i.e. the

first digit of all responsible items for Pp are the same. After having determined the first digit, we can continue

the test on Pp(S2,0) and Pp(S2,1) and so on. Assume the j-th digit is the first digit with Pp(Sj,0) = Pp(Sj,1), i.e. the

first j – 1 digits of all responsible items are the same but different at the j-th digit. There are two possible

length-j binary numbers b[1]b[2]…b[j – 1]0 and b[1]b[2]…b[j – 1]1 representing the prefixes of the binary

representations of all responsible items of Pp. For each i > 0, there are at most d length-i binary numbers

5

b[1]b[2]…b[i] representing the prefixes of the binary representations of all responsible items of Pp. In order

to determine the (i + 1)-th digits of the responsible items of Pp, two tests on items with the prefixes of their

binary representations b[1]b[2]…b[i]0 and b[1]b[2]…b[i]1 have to be performed. A total of 2d tests might be

needed for each digit and 2dlog2n in total for a particular phenotype. Thus, 2dklog2n tests are needed for k

phenotypes.

However, many of these tests can be shared. For example, when the responsible items of two pheno-

types with the same mechanism have the same prefix b[1]b[2]…b[i], the test on the (i + 1)-th positions of

these two items can be performed at the same time. Similarly, when there are two disjoint sets of phenotypes

Sα and Sβ with the same mechanism each has a responsible item with prefix b[1]b[2]…b[i] and

b’[1]b’[1]…b’[i] respectively, the test on the (i + 1)-th positions of these items can be performed at the same

time. However, two disjoint set with different prefixes of the same phenotype cannot be tested together as we

cannot associate the test results to which set or both sets of items. Thus, we can construct a graph G with each

vertex represents a subset of prefixes of some responsible items of different phenotypes, on which a single

test can be performed without mixing up their results. There is an edge between two vertices u and v if and

only if there is a phenotype Pp having some responsible items with prefixes in u and v at the same time, i.e.

the tests on these two subset of prefixes cannot be performed together. Given two vertices u and v with no

edge in between, the test results of the phenotypes having responsible item with prefix in u will not be af-

fected by those items with prefix in v of different phenotypes, and vice versa. Thus, the test on the responsible

items with prefixes in these two vertices u and v can be performed at the same time. Vertices without edges

connecting them can be merged together until a clique is formed. The maximum number of prefixes that can-

not be performed at the same time is the same as the size of the largest clique in the graph G.

Lemma 1: Given x phenotypes each with at most d responsible items with the same mechanism. Let each

vertex in G represent the prefixes of some responsible items and there is an edge between two vertices u and v

if and only if a phenotype Pp has two items with prefixes in u and v at the same time, the size of the largest

clique formed by G is at most d x .

Proof: Given a phenotype Pp with at most d responsible items, there are at most (2
d) edges corresponding to

Pp. Since there are x phenotypes, there are at most x(2
d) edges in graph G. Since a clique of size c has (2

c)

edges and (2
c) ≤ k’(2

d), which implies c ≤ d x . �

Theorem 3: The number of tests needed for solving the APT problem with k phenotypes each with at most d

responsible items is at most 4 d  2/k  · log2n.
Proof: Consider there is x phenotypes with OR-mechanism and k – x phenotypes with AND-mechanism. By

Lemma 1, at most 2 d x + 2 d xk  tests are needed for determining each digit of the responsible items.

The maximium number of tests happens when x = k/2. Thus at most 4 d 2/k tests are needed for each digit

and at most 4 d  2/k  · log2n tests are needed for solving the APT problem. �

4 APT algorithms for special k and d

For some particular values of k and d, we are able to derive better algorithms to solve the APT problem. For k

= 1, d = 2, we can use 2log2n tests to solve the problem with 4 fewer tests than the general solution given in

Section 3.1. For k = 2 and d = 1, only log2n tests are needed. And for k = 2 and d = 2, we can have a solution

which uses at most 2log2n + 2 1log2 n  tests compared to the solution in Section 3.2 which uses at

most 4(log2n – 1) + 2 tests.

4.1 One phenotype (k = 1 and d = 2)

Assume that we only have one phenotype (k = 1) with unknown mechanism and at most 2 responsible items,

we will show that the APT problem can be solved by 2log2n tests which matches the lower bound

log2((1
n)+(2

n)+(2
n)) = 2log2n when n is power of 2. In Lemma 2, we first show that using a binary search

technique, we can locate the responsible items if the mechanism of the phenotype is known and the responsi-

ble items are in two disjoint known subsets.

Lemma 2: Given a phenotype with two responsible items of known mechanism, let G = {1,2, …, n} be di-

vided into two disjoint subsets S1 and S2 with each subset containing one responsible item. Locating the re-

sponsible item in S1 or S2 takes log2|S1| and log2|S2|tests respectively.

Proof: Without loss of generality, we show how to locate the responsible item x in S1. If the phenotype is an

AND-phenotype, we know that the other responsible item y is in S2. So, we divide S1 into two subsets S11 and

S12 of equal size, and test (S11 ⋃ S2), if the result is positive, then x is in S11, otherwise, x is in S12. Each round,

we can remove half of the items of S1 from consideration. So, log2|S1| tests are sufficient. If the phenotype is

an OR-phenotype, again we divide S1 into two equal subsets S11 and S12, we only need to test S11 to see if it

contains x. So, log2|S1| tests are sufficient. Similarly log2|S2| tests are sufficient for determine the respon-

sible item in S2. �

Based on Lemma 2, we can solve the problem of a single phenotype of unknown mechanism with at most

two responsible items x and y (x = y when there is only one responsible item) using a recursive algorithm as

follows. We divide G into two disjoint sets S1 and S2, and test S1 and S2 separately. There are four cases:

(a) P1(S1) = 1 and P1(S2) = 0

It implies that both responsible items x and y are in S1, so we can recursively work on S1 only.

(b) P1(S1) = 0 and P1(S2) = 1

Similar to Case (a), it implies that both responsible items x and y are in S2.

(c) Both P1(S1) and P1(S2) equal 0

It implies an AND-phenotype with exactly two responsible items, w.l.o.g x ∈ S1 and y ∈ S2. By Lemma 2, we

can locate x in S1 and y in S2 using log2(n/2) = log2n – 1 additional tests.

(d) Both P1(S1) and P1(S2) equal 1

Similar to Case (c), it implies an OR-phenotype with exactly two responsible items, w.l.o.g x ∈ S1 and y ∈ S2.

By Lemma 2, we can locate x in S1 and y in S2 using log2(n/2) = log2n – 1 additional tests.

So, the algorithm uses only 2log2n tests to solve the APT problem.

4.2 Two phenotypes with at most one responsible item (k = 2 and d = 1)

This is a very easy case and is not covered in the previous sections. Since there is only one responsible item

for each phenotype, the mechanisms of the phenotype can be ignored as both OR- and AND-mechanisms are

the same. The responsible items can be determined by performing a binary search on both phenotypes at the

same time until the two responsible items are found in different subsets, i.e. the test results are different for

the two phenotypes. Then a binary search on these two subsets can be performed simultaneously because the

test result of a phenotype does not affect the test result of another phenotype. The total number of tests needed

is only log2n.

7

4.3 Two Phenotypes with at most two responsible items (k = 2 and d = 2)

The same binary search technique described in the Section 4.1 cannot be applied when d = 2 since it is no

longer possible to ignore the mechanisms of the phenotypes. The same procedure does not work when the two

phenotypes have different mechanisms. To illustrate the problem, assume phenotype P1 is an AND-phenotype

and phenotype P2 is an OR-phenotype, S1 and S2 are two disjoint subsets of G, each contains two responsible

items, one from each phenotype. Using the binary search technique as described in Lemma 2, we can divide

S1 into S11 and S12. However, to search the responsible item for P1 in S1, we need to test (S11  S2) as P1 is an

AND-phenotype. On the other hand, to determine the responsible item for the OR-phenotype P2, we need to

test S11 only. So, we cannot get the test results of phenotypes on different sets with a single test. In this section,

we will describe a recursive algorithm for solving APT problem with two phenotypes of unknown mechanism,

each with at most 2 responsible items using at most 2log2n + 2 1log2 n  tests.

We divide G into two disjoint subsets of equal size S1 and S2 and test S1 and S2. For each phenotype P,

there are two possible outcomes (1) P(S1) ≠ P(S2), the phenotype appears in exactly one subset, i.e. one subset

does not contain any responsible item related to the phenotype, or (2) P(S1) = P(S2) = 1 (or 0), the phenotype

appears (disappears) in both subsets S1 and S2 and must be OR-mechanism (AND-mechanism) with exactly

two responsible items, i.e. each subset contains one responsible item for the phenotype. Depending on the

outcomes of the two phenotypes, we have the following three cases. When the outcomes for both phenotypes

are (1), it is case (a). When the outcomes for both phenotypes are (2), it is case (c). Case (b) is when the out-

comes for two phenotypes are different, one is (1) and the other is (2). Cases (a) and (b) are relatively easier

and the phenotypes can be determined using at most 2log2n + 1 tests for each case. The details of handling

these cases can be found in the appendix. Here, we mainly focus on Case (c).

Let x1, y1 be the responsible items for P1 and x2, y2 be the responsible items for P2. Note that when P1 (P2)

has only one responsible item, x1 = y1 (x2 = y2). Without loss of generality, let {x1, x2} ⊆ S1, {y1, y2} ⊆ S2 and

the mechanisms of phenotype P1 and P2 are known. If the two phenotypes are of the same mechanism, similar

to the case for k = 2 and d = 1, we can perform a binary search on S1 for x1 and x2 together using (log2n – 1)

tests and then on S2 for y1 and y2 using another (log2n – 1) tests. Thus, 2log2n tests in total will be needed.

In the situation where the two phenotypes are of different mechanisms, assume P1 is OR-mechanism

and P2 is AND-mechanism. Initially, {x1, x2} ⊆ S1 and {y1, y2} ⊆ S2. Partition S1 into two subsets of equal size

S11 and S12 and S2 into S21 and S22. Two tests are performed on S11 ⋃ S21 and S11 ⋃ S22 respectively. Depending

on the test outcomes, the sizes of sets containing the responsible items will be reduced. If the test outcome of

the OR-mechanism phenotype P1 on S11 ⋃ S21 and S11 ⋃ S22 is:

(0,1): then x1 ∈ S12 and y1 ∈ S22

(1,0): then x1 ∈ S12 and y1 ∈ S21

(1,1): then x1 ∈ S11 and y1 ∈ S2

(0,0): this case is not possible

If the test outcome of the AND-mechanism phenotype P2 on S11 ⋃ S21 and S11 ⋃ S22 is:

(0,1): then x2 ∈ S11 and y2 ∈ S22

(1,0): then x2 ∈ S11 and y2 ∈ S21

(1,1): this case is not possible

(0,0): then x2 ∈ S12 and y2 ∈ S2

As you can see, cases that halve the sizes of the sets containing the responsible items or produce disjoint sets

containing x1 and x2 (y1 and y2) are not problematic (see Lemma 3 in the Appendix) and the responsible items

for the phenotypes can be determined with 2 log n tests. In fact, the outcome (1,1) for the OR-mechanism

phenotype P1 with outcome (0,1) or (1,0) for the AND-mechanism phenotype P2 will result in {x1, x2} ⊆ S11,

y2 ∈ S’ = S21 or S22 and y1 ∈ S2 where S’ ⊆ S2. While the outcome (0,0) for the AND-mechanism phenotype P2

with outcome (0,1) or (1,0) for the OR-mechanism phenotype P1 will result in {x1, x2} ⊆ S12, y1 ∈ S’ = S21 or

S22 and y2 ∈ S2 where S’ ⊆ S2. A sub-problem P that solving the APT problem with three subsets: {x1, x2} ⊆ T,

y1 ∈ TO and y2 ∈ TA where TA ⊆ TO or TO ⊆ TA. Assume TA ⊆ TO, we can partition subset T (TA) into two equal-

size disjoint subsets T1 and T2 (TA1 and TA2) and perform 2 tests (T1 ⋃ TA1 and T1 ⋃ TA2) with the different

cases (P1(T1 ⋃ TA1), P2(T1 ⋃ TA1)), (P1(T1 ⋃ TA2), P2(T1 ⋃ TA2)):

Case i:

(0,0), (1,0): {x1, x2} ⊆ T2, y2 ∈ TA, y1 ∈ TA2 to be solved by recursion

Case ii:

(1,0), (1,1): {x1, x2} ⊆ T1, y2 ∈ TA2, y1 ∈ TO

(1,1), (1,0): {x1, x2} ⊆ T1, y2 ∈ TA1, y1 ∈ TO

We can recursively divided T1 and TA1 to determine x1, x2 and y2 using 2log2n tests. However, it takes

log2n – 1 extra test to determine y1, so a total of 3log2n – 1 might be needed. In order to determine y1 more

efficiently, we perform a test on TO – TA1 every s steps (halving of T1). If P1(TO – TA1) = 1, y2 ∈ TA1, y1 ∈ TO –

TA1 the problem can be solved by Lemma 3 using 2log2n +  n2log  + 1 tests in total. If P1(TO – TA1) = 0,

the problem can be solved by recursion with the size of TO at most  sn 2/ . In the worst case, log2n – 1 / s

tests on TO – TA1 are needed and an extra s tests are needed for determining y1 in TO – TA1 of size 2s – 1 using

binary searching. Thus, log2n – 1 / s + s extra tests are needed for determining y1 with the minimum value

when s =  1log2 n . The total number of tests required is 2log2n + 2 1log2 n .
Case iii:

Other cases: {x1, x2}, y1 and y2 are in disjoint subsets and the problem can be solved easily by Lemma 3 in the

Appendix and the phenotypes can be determined with 2 log n tests.

Thus, the APT problem can be solved using at most 2log2n + 2 1log2 n  tests.

5 Conclusions

In this paper, we introduced the phenotype testing problem which is an important generalization of the well-

known combinatorial group testing problem. We have obtained several interesting results for the adaptive

version of the problem for handling any number of phenotypes (k) and any number of responsible items (d) in

each phenotype. For some special cases with k and d smaller than 2, algorithms using near-optimal number of

tests are also presented. In this paper, we only consider two common mechanisms, namely And-version and

OR-version, on how the subset of items relates to a phenotype. More complicated mechanisms, such as mix-

ing AND and OR in the same subset of inducing items, should be modeled and considered. Also, even for the

OR-version and AND-version of the problems, the lower bound and upper bound are still not closed yet.

Finding a better algorithm which uses fewer tests or finding a better lower bound would be desirable.

References

1. M.A. Bishop, A.J. Macula, T.E. Renz, and V.V. Ufimtsev, "Hypothesis group testing for disjoint pairs", J.

Comb. Optim. 15:7-16 (2008).

2. A. Bonis, L. Gasieniec, U. Vaccaro, “Optimal Two-Stage Algorithms for Group Testing Problems”, SIAM

J. on Computing 34(5): 1253-1270 (2005).

3. F. Chin, H. Leung, S.M. Yiu, “Non-Adaptive Complex Group Testing with Multiple Positive Sets”, In

proceeding of 8th Annual Conference on Theory and Applications of Models of Computation (TAMC), to

9

appear in 2011.

4. P. Deng, F.K. Hwang, Weili Wu, David MacCallum, Feng Wang, and Taieb Znati, "Improved construction

for pooling design", J. Comb. Optim. 15:123-126 (2008).

5. D.Z. Du, F. Hwang, "Combinatorial group testing and its applications", 2nd edition, World Scientific,

Singapore (2000).

6. D.Z. Du, F.K. Hwang, Weili Wu, and Taieb Znati, "New construction for transversal design", Journal of

Computational Biology 13(4): 990-995 (2006).

7. S.M. Elbashir et al., “Duplexes of 21-Nucleotide RNAs Mediate RNA Interference in Cultured Mamma-

lian Cells”, Nature 411: 494-498 (2001).

8. A. Fire et al., “Potent and Specific Genetic Interference by Double-Stranded RNA in Caenorhabditis Ele-

gans”, Nature 391: 806-811 (1998).

9. F.K. Hwang, “A method for detecting all defective members in a poputation by group testing”, J. Amer.

Statist. Assoc. 67: 605-608 (1972).

10. N. Jendreyko et al., “Phenotypic Knockout of VEGF-R2 and Tie-2 with an Intradiabody Reduces Tumor

Growth and Angiogenesis in vivo”, PNAS 102(23): 8293-298 (2005).

11. C.H. Li, “A Sequential Method for Screening Experimental Variables”, Journal of the American Statistical

Association 57(298): 455-477 (1962).

12. H.Q. Ngo and D.Z. Du, “A Survey on Combinatorial Group Testing Algorithms with Applications to

DNA Library Screening”, in D-Z. Du, P.M. Pardalos, P.M., and Wang J. (eds.), Discrete Mathematical

Problems with Medical Applications, DIMACS Series, 55, American Mathematical Society, Providence,

RI (2000).

13. F. Ruberti et al., “Phenotypic Knockout of Nerve Growth Factor in Adult Transgenic Mice Reveals Severe

Deficits in Basal Forebrain Cholinergic Neurons, Cell Death in the Spleen, and Skeletal Muscle Dystro-

phy”, J. Neurosci. 20(7): 2589-601 (2000).

14. A.G. Yang et al., “Phenotypic Knockout of HIV Type 1 Chemokine Coreceptor CCR-5 by Intrakines as

Potential Therapeutic Approach for HIV-1 Infection”, Proc. Natl. Acad. Sci. 94: 11567-572 (1997).

Appendix

A.1 Two Phenotypes with at most two responsible items (k = 2 and d = 2): Cases (a)

and (b)

Recall that to handle two phenotypes with at most two responsible items, we divide G into two disjoint sub-

sets of equal size S1 and S2 and test S1 and S2. For each phenotype P, there are two possible outcomes (1) P(S1)

≠ P(S2) and (2) P(S1) = P(S2) = 1 (or 0). Depending on the outcomes of the two phenotypes, we have three

cases.

Case (a): When the outcomes for both phenotypes are (1).

Case (b): When the outcomes for the phenotypes are different, one is (1) and the other is (2).

Case (c): When the outcomes for both phenotypes are (2).

In this appendix, we show how to handle Cases (a) and (b). Let x1, y1 be the responsible items for P1 and x2, y2

be the responsible items for P2. Note that when P1 (P2) has only one responsible item, x1 = y1 (x2 = y2).

Case (a) All responsible items (at most 2) of each phenotype are in a single subset

(i) If the responsible items for both phenotypes, i.e. {x1, y1, x2, y2}, are in a single subset, we can ignore

all items in another subset and the problem can be solved recursively with its size reduced by half.

(ii) If the responsible items for the two phenotypes are in different subsets S1 and S2, say {x1, y1} ⊆ S1

and {x2, y2} ⊆ S2, this reduces to two APT problems with k = 1 and d = 2, each can be solved using 2log n
tests using Algorithm 1. We can apply one single test on S1 and S2 for two phenotypes simultaneously as the

test result for S1 will not affect the test result for S2 and vice versa. For example, if we need to test S’ in S1 and

S’’ in S2, we can combine these two tests into one and test S’  S’’ on both phenotypes instead.

Case (b): {x1, x2, y2} ⊆ S1 and y1 ∈ S2 and the mechanism of phenotype P1 is known

This is a more complicated case. Subset S1 contains one item for phenotype P1 and the two items for pheno-

type P2. We keep partitioning S1 into two disjoint subsets, S11 and S12, of equal size and test one of the subsets,

say S11. W.l.og. assume P1 is OR-mechanism1, based on the test results on S11, we have the following cases for

(P1(S11), P2(S11)).

(1,0): Perform an extra test on S12 and consider the possible cases for P2(S12)

(i) P2(S12) = 0: {x1, x2} ⊆ S11, y2 ∈ S12, y1 ∈ S2 and P2 is AND-mechanism (to be solved by Lemma

3 given below.)

(ii) P2(S12) = 1: x1 ∈ S11, {x2, y2} ⊆ S12 and y1 ∈ S2 (to be solved by Lemma 4 given below.)

(0,1):Similar to the case (1,0), perform an extra test on S12 and consider the cases for P2(S12)

(i) P2(S12) = 0: x1 ∈ S12, {x2, y2} ⊆ S11 and y1 ∈ S2 (to be solved by Lemma 4.)

(ii) P2(S12) = 1: {x1, x2} ⊆ S12, y2 ∈ S11, y1 ∈ S2 and P2 is OR-mechanism (to be solved by lemma 3.)

(1,1): There are two possible cases

(i) {x1, x2, y2} ⊆ S11 and y1 ∈ S2

(ii) {x1, x2} ⊆ S11, y2 ∈ S12, y1 ∈ S2 and P2 is OR-mechanism

Case (i) is the same as case (b) while case (ii) is a special case of case (b) with x2 = y2 if set S12 is ig-

nored. Thus, the problem can be solved recursively on S11 and S2 with |S11| = |S1| / 2. Note that when x2 =

y2 or in case (ii), we will not have the case (P1(S11), P2(S11)) = (1,0) or (0,1) and can determine x1 and x2

using log2|S11| tests. With an extra test on S12, we can determine whether it is x2 = y2 or case (ii). If x2 =

y2, we can determine y1 ∈ S2 by binary search using log2|S2| tests, otherwise, we can determine y2 ∈ S12

and y1 ∈ S2 by binary search on S12 and S2 simultaneously using max{log2|S12|, log2|S2|} tests. Thus

2log2n + 1 tests are sufficient.

(0,0): Similar to case (1,1), except that P2 is AND-mechanism

With Lemma 3 and Lemma 4, we can show that for case (b), at most 2log2n + 1 tests are sufficient.

Lemma 3: Let G be divided into three disjoint subsets S1, S2 and S3. If y1 ∈ S1, y2 ∈ S2 and {x1, x2} ⊆ S3, de-

termining all the responsible items in S1, S2 and S3 takes at most log2(max{|S1|,|S2|}) + log2|S3| tests when

the mechanisms of P1 and P2 are known.

Proof: Our approach is to determine x1 and x2 in S3 first and determine y1 and y2 by performing binary search

for both phenotypes on subsets S1 and S2 simultaneously. When both phenotypes are OR-mechanism, similar

to the problem for k = 2 and d = 1, we determine x1 and x2 by binary search for both phenotypes on subset S3

which requires log2|S3| tests. We can then determine y1 and y2 by binary search for both phenotypes on sub-

sets S1 and S2 simultaneously using log2(max{|S1|,|S2|}) tests. Similarly, for both phenotypes are AND-

mechanism, we perform binary search for both phenotypes as OR-mechanism except that each test set in S3

includes S1 ⋃ S2.

1 If P1 is AND-mechanism, the tests on S11 and S12 will include S2 which contains the other responsible items for P1.

11

 If one phenotype, say P1, is OR-mechanism and another phenotype, say P2, is AND-mechanism, we can

divide S3 into two equal subsets S31 and S32 and test (S31 ⋃ S2), if the results are (i) positive (or negative) for

both phenotypes, both items {x1, x2} are in S31 (or S32), then we can recursively solve the problem with half of

the size of S3, otherwise, (ii) x1 and x2 are in different set S31 and S32, and we can determine x1 and x2 at the

same time by binary search and including S2 in every test. As for y1 ∈ S1, y2 ∈ S2, we can also determine them

by binary search simultaneously and depending whether P1 and P2 is AND-mechanism, x1 or x2 has to be

included in each test. Therefore, log2(max{|S1|,|S2|}) + log2|S3| tests are sufficient. �

Lemma 4: Let G be divided into three disjoint subsets S1, S2 and S3. If x1 ∈ S1, y1 ∈ S2 and {x2, y2} ⊆ S3, locat-

ing all the items in S1, S2 and S3 takes max{2log2|S3| , log2|S1| + log2|S2|} tests.

Proof: We apply Algorithm 1 on S3 to determine both items in 2log2|S3| tests. To determine the items in S1

and S2, it requires log2|S1| and log2|S2| tests respectively by binary search. Since the tests for S3 and S1 (S3

and S2) can be done simultaneously, thus max{2log2|S3|, log2|S1| + log2|S2|} tests are sufficient. �

